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THE SYNTACTIC STRUCTURE OF MAD/I

I. INTRCDUCTION

The various dialects of MAD developed at The Univer-
sity of Michigan and elsewhere can be described as ALGOL-like
languages with strong flavors of FORTRAN. The language has en-
joyed considerable popularity at the University in both teaching
and research during a developmental evolution which began in 1960
vith an IBM 704 version of the compiler and progressed to the
present IBM 7090 version. The MAD language itself is designed
to be readily taught to relativeiy unsophisticated students and
yet to provide the power of generality of expresssion necessary
in sophisticated research applicatbons. 1In general, the compiler
implementations have been finely tuned for high-speed translaticn
and for production of reasonably good object code. The list of
references at the end of this report contains a compendium of
reference material covering the development of the compiler and
the structure of the language. In the subsequent discussion of
this report a working familiarity with the MAD language will be
assumed in programming examples, although this is not strictly

necessary for an understanding of the principles involved.

1.1 Evolution of MAL/I

In mid-1965 the University began a gradual systcms
change-over from the IBM 7090 to the System/360 Model 67. The
development of the System/360 system was predicated upon the

virtual-memory concept, which involves a hardware-assisted
-1-

i i el




t41 W 030

dynamic address translation procedure in which c¢ach concurrent

system program is written as if it owned all the addressable
core storage of the machine. Successful operation of this pro-
cedure requires a high-speed backup storage, such as a drum, for
temporary storage of core memory overflows and furthermore a re-

liance upon a sharable system program structure. The implemen-

tation of the Michigan Timesharing System (MTS) is based on these

concepts and represents the environment in which both the new
MAD compiler and its compiled programs will operate.

At its inception the MAD project was faced with two
alternative developmental paths. Nn the one hand a MAD trans-
lator could be implemented for the Model 67 which would be a
virtual transliteration of the existing MAD/7090 *ranslator and
with {cw additional features. On the other hand a new language
could be developed which contained all those useful features of
the existing MAD/7090 translator and in addition many new ones
required for such applications as the development of graphics
languages. The former effort would at least provide a contin-
uance of the MAD/7090 language itself, a factor thought vital
in the almost captive MAD-committed user population. The latter
effort would be expected to provide, in addition to the valuable
developmental experience itself, a sound theoretical franework
bolstering the specification of a new language called MAD/I and
the construction of its compiler. 1In addition, the framework
developed would include a systematic procedure for the specifi-

cation of new language families, based on MAD/I, within
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which specialized languages suitable for the manipulation of

data structures could be developed.

Although, in the beginning, the developmental effort of
the MAD project was concentrated along the former or transliter-
ation path, a gradual shift in emphasis took place, to such an
extent that the dewlopmental effort at this time is almost
solely concentrated in the specification of MAD/I and the im-
plementation of its compiler. The new Xanguage is in many
respects very much like the old. For instance, the assignment,
transfer, conditional, iteration, and input/output statements
are incorporated into the MAD/I language in substantially the
same way as into MAD/7090. Variables, constants, functions,
arrays, and expressions have the same interpretation in bcth
languages. Several minor differences exist between the two languages,
however, in the aiules for the naming of statements, the scope of
compound stat2ments, and the eler»nts of input/output statements.

The major differences between the two 1 1guages oc-
cur in the inclusion of comprehensive definitional faci ' ities
and the introduction of new data structural types. In the MAD/
7090 language a definitional facility was implemented which
provided for the introduction of new data types and for the
definition of a restricted class of operations upon them. In
the new new language this facility has been expanded so that,
not only a much richer class of data types can be defined, but
quite general operations can be performed uron them. In order

to implement this expanded definitional facility, a new
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retalanguage has been developed in which the definitions are

cxpressed. In fact, all of the MAD/I statements announced in
the programming manuals nave been implemented in this new meta-
language.

The impact of the systematic introduction of new data
types is mos* obvious in the syntactic specification of the MAD/
I declaration statements. Although the MAD/7080 concepts of
dimension, storage mapping, and mode have validity in MAD/I
programs, their interpretation is far more general. For instance
arrays may contain arrays as elements, and the storage assigned
tec them may vary dynamically during execution and be shared among

several functions. Linkages between furnctions are far more

flexible, and dynamic loading and overlay operations are possible.

In short, the declaration features of the language allow maximum
advantage to be taken of the virtual-memory concept and the time-
sharing environment in which MAD/I1 programs are executed.

The broadening of scope and generality as compared
with MAD/7090 has not been achieved without a corresponding loss
of compatibility in respect to the older language. In fact, the
characteristics of the 7090 as compared to those of the Model 67
seem to prejudice a virtue of compatibility in the first place.
As 4 result, many common gimmicks populer in MAD/7090 program-
ming simply have no counterpart in MAD/I programming. However,
the converse most certainly will be far more likely, in spite of
the fact that old programming habits die hard. The most common

incompatibilities are of course related to the character set

et i il
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and the byte addressing structure of the Model 67, and this

directly affects those operations of bitwise shifting and mask-
ing of data, and the resolution of storage addresses. A trans-
lator has been constructed to aid in the conversion of MAD/7090

programs to their MAD/I counterparts, and has proved useful in

the majority of cas2s. In some cases involving packing/unpacking

and character-sensitive operations, translation is not possible
unless a highly sophisticated processor is postulated. Unfor-
tunately, the MAD language has been particularly convenient in
the construction of symbol manipulation programs; and a large
body of extant and useful programs are unavoidably threatened
with obsolescence as a result of the eventual change-over to
MAD/I.

As a consequence of the power inherent in the defini-
tional facilities of the compiler, it is afparent that a des-
cription of the language in terms of its syntax would be mis-
leading at best. Obviously the structure of the translator pro-
vides the capabilities for the definition of a rather wide class
of liaguages, each one characterized by a consistent set of
statements of the definitional metalanguags. One of these sets
of definitional statements just happens to represent the lan-
guage called MAD/I in the programming manuals, but any other
consistent set of definitional statements might have been chosen
as well. The MAD/I set was checsen rather arbitrarily to re-
present that language thought most useful and economical for

the widest class of potential users, yet with a large capability
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for enrichment through the inclusion of special-purpcse defi-
nitional packages.

The most useful description of the MAD/I language
and its translator then demonstrably involves .he syntactic
specification of th .se :-onstructs which can be identified by
the various analysis aljorithms embedded within the translator
and a description of the operations possible upon these con-
structs. These tasks will dominate the discussiou for the re-
mainder of this report. However, many examples drawn from the
MAD/I language will be used frc: time to time to explicate
the discussion.

It should be noted that the procedures described
herein used to analyze the syntactic specification of MAD and
to construct its compiler are applicable to other than alge-
braic-type languages. In fact, the same analysis techniques
have been used in the construction of a machine-language as-
sembler znd in the specification of a computer-to-computer

message transmission protocol.

II. FORMAL SYNTACTIC SPECIFICATION

The formal linguistic stracture which describes the

MALC syntax can be described as a modified operator precedence

grammar. This structural description provides an exceptionally

sound framework which satisfies both the needs of syntactic
flexi.ility in ti.e definition of statement forms and of struc-

tural integrity in the control of error recovery. The approach
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taken in the formulatory steps of the formal syntactic specifi-
cation is first to construct a kernel language of the operator
precedence type and then to construct a set of context-dependent
transformations which operate upon sentences of the source lan-
guage to produce sentences of the kernel language. Since it is
known that the family of precedence languages are unambiguous
and have rather good error-recovery characteristics; then, if
the conte¢xt-dependent transformations are carefully chosen, the
resultant language should be considerably richer than the
operatcr-precedence kerncl language and yet reta n many of its

desirable characteristics.

2.1 Terminoloay

A terminal vocabulary VT is a set of symbols chosen

as the alphabet of the language. A language L 1is 2z collec-
tion of certain strings of all those strings formed by inde-
finite ccncatentions of elements of VT . Each of these strings
is a sentence S of L and is generated by applications of a

set of rules called a grammar G . In the grammars discussed

here each of these rules or productions take the form U-»>x ,

where U 1is an element of 2 nonterminal vocabulary VN and
X 1is a string over VT + VN » called simply the vocabulary.

Furthermore, every § in L is assigned a structural descrip-

tion by G which demonstrates how that string is decomposed
into its consiituent structural units, each labeled by an

element of VN




The productions of G thus form an effective procedure

for deciding whether any string over the vocabulary is or is
not a sentence of the language. Furthermore, since every mean-

ingful constituent substring or prime phrase of a sentence is

assigned a nonterminal symbol by a production of (G , then the
identification of a prime phrase during the decision process can
be made synonymous with the production of some arbitrary inter-
pretation or translation of the elements of the prime phrase
itself.

If all productions of G take the form U»x as
above, then L is described as context-free and the decomposi-
tion or parsing of a sentence into its constituent structural
units inwlves relatively simple techniques. On the other hand,
if some of the productions are of the form xUy+z , where x ,
y, and z are strings over V , then L is described as con-

text-dependent, and more complicated parsing technigues are

required. A production-oriented description of MAD/I is ne-
cessarily context-dependent, although by far the majority of
productions are of the context-free type.

Any useful programming language like MAD/I should be
capable of being described by a particular grammar in such a
way that each sentence of the language is assigned exactly
one structural description, or, equivalently, that only one
parse exists. If such is the case, then the language is des-

cribed as unambiguous. Althougi. 1t is not in general possible
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to determine whether a particular phrase-structure grammar is

or is not unambiguous, certain fam:lies of phrase-structure
grammars can be shown to have this property. One of the most

useful of these families is that of the precedence grammars;

and, of these, the operator precedence grammars are particularly

suited to the description of MAD/I. 1In fact it is convcnient
to describe the bulk of MAD's syntax in an operator-precedence
grammar and then to describe those few exceptions by means of
context-dependent transformaticos which are applied to the
source text prior to the operator-grammar parsing algorithm.
There is one significant problem connected with this
approach. The useful operator precedence grammar parsing tech-
niques operate upon the terminal symbols of a sentence producing
progressively larger prime phrases as intermediate parses and
finally terminating when the entire sentence has been scanned.
Such a process, commonly called a bottom-up parse, is highly
adaptable to the parsing of the lower-level algebraic expres-
sion structures in the language. On the other hand, the pars-
ing of the higher-level statement structures is intuitively
a much more goal-oriented process, and a more general top-
down process is needed. 1In the syntactic specification of
MAD/1, the productions are carefully chosen so that contextual
features can provide clues for a macro-driven top-down state-
ment scan, yet retain the advantages of a bottom-up expres-

sion scan.
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2.2 Production Systems

The set of prcductions defining a grammar may be
represented in any ot severial common notational schemes, the

most common of which may be the Backus Normal Form (BNF). The

particular notational scheme¢ followed herein is an adantation
of the BNF and is defined as follows:

Each production P consists of a lert part U ,
which is a particular symbol of VN , and a right part x ,
which is a string over V = VT + VN . 1n general there may be
more than one production with the same left part, cach such

production corresponding to an instance of a component in a

BNF rule. It will be assumed that no right part is the null

string, for it can be shown that a grammar containing a pro-

Prascoce g

duction with a null right purt can be naturally rewritten

without such a production and without materially affecting

[

the generative capacity of the grammar.

A grammar, each rule of which takes one of the

[ Fettx]

foliowing forms:

| it |

U~+a 1.
Ul-’aU2 2.
h
U1 Uza 3.
Ul*auzb, 3.
where U; are elements of VN and a, b are strings over VT ,
is called a linea: grammar. These grammars are characterized

by the fact that. 1n each product:on, c¢nly a single nonterminal

T T
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symbol on the right side is replaced or rewritten by the non-
terminal on the left; and, furthermore, each such rewrite
(except those corresponding to Rule 1) ha:s fewer symbols than

the previous. Jf we add to these four forms th:c following

Ul*U2 5.

U1+U2aU3 6.

anda require a and b to be single elements of V. , then an

T
appropriat. paradigm for an algebraic language production sys-
tem is evident. Here the terminal symbol a in Rule 1 corre-
sponds to the notion of operand, and the terminal symbols in the

remaining rules correspond to the notion of operator. The non-

terminal symbols correspond to the notions of expression and

statement, depending upon the hierarchy of the production system.

Note that these six rules represent all of the produc-
tion forms of an operator grammar (see below) which have right
sides of lengths no greater than three and, furthermore, con-
tain no sequences of two or more contiguous terminal symbols.
Although sejuences of this type can occur in an operator gram-
mar, nevertheless, each such sequence can be mapped into a

single element of a set of metaterminals for convenience, and

this practice will be followed henceforth.

Rule 1 establishes a duality between the notion of
operand and that of nonterminal symbol. 1In general, in an
algebraic language grammar there is a derivation or sequence

. f applications of th: rules of the grammar starting with each
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and every nonterminal symbol of the grammar and ending with an
operand. Using the notion of metaterminal mentioned above, it
is <lear that only a single Rule 1 is necessarv in an algebraic
language grammar. Rules 2 and 3 represent the types of produc-
tions associated with the unary prefix and unary postfix oper-
ators in the ianguage, and Rule 6 represents the type of produc-
tion associated with the binary operators. Rule 4 represents
the type of production associated with parenthesized groupings,
and Rule S5 represents really only a notational convenience so
that the grammar can be expressed in a more compact form,

By cunvention, each production whose form coincides
with Kules 2, 3, and 6 above will be identified by its single
terminal symbol, which serves as a referent in the application

of the semantic interpretation rules or macro transformation

associated with the production. Thus, when a prime phrase is
identified by the bottom-up parsing algorithm, it is only
necessary to identify whether its form coincides with Rule 2,

3, or 6 and which operator is involved. The nonterminal symbols

of the prime phrase play no part in this determination.

2.3 Operator Precedence Grammars

A particular grammar can be found to belong to the
family of precedence grammars by application of a certuin
technique which results in the assignment of one or more binary

relations between ecach pair of symbols of the vocabulary

vV = VN + VT . These relations can be symbolized as o (null)

¥ ] aed Saa SO SE-m 2=

———
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<, = , and > , and summarized in an n x n matrix, where n

is the number of symbols of V . If no more than one of these

four relations holds between any such pair in the language, then
the grammar belongs to the class of simple precedence grammars.
The precedence matrix so constructed can serve as the driving

table in a simple algorithm which decomposes a sentence of the

language into its prime phrases.

The sheer size of the precedence matrix for a language
of some complexity (146x146 for the MAD/I case) encourages '
further restriction in the grammar to exclude those productions

which contain adjacent nonterminal symbols. Such grammars,

known as the operator precedence grammars, are characterized

by a mx m precedence matrix, where m is the number of

symbols of VT . A good deal of violence is done to some natural

syntatic descriptions when this restriction is enforced, al-
though several techniques are available to enrich such a lan-

guage by the introduction of metaterminal symbols consisting

of certain strings over VN + VT . A certain rationale is

available, then, to restrict the kernel structural description

of MAD/I to an operator precedence grammar.

A verification procedure, due to Floyd (see Refer-

ences), is available with which it is possible to determine

whether or not a particular operator grammar is a member of

the precedence family or not. The procedure can be implemented

either recursively or iteratively as a computer program. Both

techniques have been implemented as MAD/7090 programs, with the




latter technique enjoying a speed advantage of about ten-to-one

over the former. The latter technique can be illustrated by

the algorithms described below. In the following, U re-

ptesents an element of VN and T an element of VT . A

string over V = VT + VN is represented by a lower-case letter.
The process of constructing a precedence matrix for

an operator grammar consists of two steps: In the first step,

two tables are constructed showing for each nonterminal symbol

U € VN those terminal symbols which can occur as the leftmost

and rightmost symbols respectively in a derivation of U . The

table of leftmost terminal derivatives (LTD) can be constructed

by the following process:

1. For each production U.,»T.x or Ul*Ulex 5

1 "1
enter Tl as an LTD of Ul .
2. For each production Ul*sz », enter every LTD of
U2 as an LTD of U1 .

3. Repeat step 2 until, in a finite number of steps,

the process converges,

The table of rightmost terminal derivatives (RTD) is constructed
in the analogous way.

The second step for constructing the precedence matrix
for an operator grammar involves the two LTD and RTD tables
just constructed, the algorithm below, and the precedence matrix
itself, an n X n square matrix where n 1is the number of

symbols of V The algorithm cited assigns four relations,

T

=

[
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one or more of which must hold between two terminal symbols

T1 and T2

1. Tlé--T2 if there is a production UL-.T, T,y or
U+xT1U1T2y

2. Tl > T2 if there is a production U+xU1T2y and
T is an RTD of Ul

3. T1 < T2 if there is a production U»leUly and
T is an LTD of U

4. T1 o T if none of the above holds.

If no more than one of these relations holds between
any two terminal symbols T1 and T2 , then the operator gram-
mar is in fact an operator precedence grammar. Note that if
T1 and T2 were not constrained to be elements of VT , but

could in fact be elements of Vy * Vo s then the same process
would result in a precedence matrix for a simple precedence
grammar.

Figure 1 summarizes those steps in the construction
of the precedence matrix for a simple algebraic-like language
taken from Flovd (see References). The equivalent steps for
the derivation of the precedence matrix for MAD/1l are summarized
in Section 4.1. In this and subsequent examples the metater-
minal symbols will be assigned in each instance as names pre-
fixed by percent signs (%) . In this figure the void e

relation is assumed to hold in all those positions of the

matrix in which a blaak is evident Blank positions in the
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Productions

S—»>A
A>A + B
A->B
B»B * ¢
B->C
C+( A)

C»%1

Left Terminal Derivatives

NTC Terminal Characters

s S
A S
B * (%1

C ( s

Nonterminal Vocabulary

S A B C

Terminal Vocabulary

) sl

Right Terminal Derivatives

NTC Terminal Characters

S + * ) $I
A + * ) 51
B * ) %1

C ) $1

Precedence Matrix

Figure 1. Floyd's

) %1
> a

> <

: e

>

>

Simple Grammar.




-17-

matrix correspond to those cases where a void precedence rela-
tion exists and provide either an opportunity for a context-
dependent transformation or an indication of an incorrect pro-
gram,that is, an occurrence of a sentence not in the language.
It is possible, reputably in all useful caczes and
certainly here, to represent the nonvoid three precedence rela-
tions between any two terminal symbols in a conveniently compact
form which assigns two integers to every terminal symbol. These
integers might be called the left and right precedence functions
and represent the '"order'" precedence relation in the same
fashion as the matrix when the left function of the leftmost
symbol is compared to the right function of the rightmost symbol

in a true order relation. Both of these precedence iunctions

are shown for Floyd's simple grammar in Table 1. 1t is possible

Terminal Character Precedence Functions
F G
+ 3
L S 4
( 1 6
) 5 1

o®

by
n
=)}

Teble 1.

in some cases to dispense with one of these functions and to
represent the precedence relations as a single integer assigned

to each terminal symbol, as is done in fact in 7090 MAD. The
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generality of the new MAD/I does not evidently permit this
simp'ification (see Section 4.1).

In practice it has not been necessary to represent
the entire precedence matrix for MAD/I within the compiler,
but only a much smaller matrix which shows whether or nct a
nonvoid precedence relation exists between any two terminal
symbols. The internal descriptor corresponding to each non-
terminal symbol in the language has coded within it an index
into this compact matrix as well as both the left and right
precedence fvnctions. This compact matrix, called the terminal
context matrix, has importance in other uses and is discussed

further below.

2.4 Contextual Features

If the grammar for a practical algebraic language
could be made as simple as Fioyd's example presented in the
previous section, then the parsing alguvrithm could be excep-
tionally simple; indeed, Floyd gives an example of such an

.

algorithm. In the more complex pracic cases, a good deal

of contextual information must be avaiiable to provide handles
for such context-dependent transformations as those to resolve
the syntax of binary operators used in unary contexts and so
forth. The d_scussion in this section will be concerned with
the development of certain tables and matrices which are highly
useful in gaining insight into the contextual structure of the
language generated by a context-free grammar. As implied, the

development of these tabhles and matrices does not require that

the grammar be an operator or a precedence grammar.

|-———'—_—————F-lmm'—'!m~s~ﬁlﬁ




The allowable pairs of terminal symbols in the lan-
guage g.nerated by a context-free grammar can be determined
with the following two-step procedure (due to Floyd). The

resul*s are summarized in an m x m terminal matrix, where m

is the number of symbols of Vp - The procedure is similar in
nature to that outlined above for the construction of the pre-
cedence matrix. In the first step two tables are cons*tructed,
each giving respectively the left most and rightmost symbocls
of V = VN + VT which may occur in a derivation for a non-

terminal symboi. The table of lertmost symbols (LS) is con-

structed by the following process:

1, For each X € V , enter X as an LS.of X
2. For each production U - Xy , enter each LS of
X as an LS of U
3. Repeut step 2 until, in a finite number of steps,

the process converges.

The table of rightmost symbols (RS) is constructed by an analo-
gous process.

The second step in the construction of the terminal
matrix involves consideration of all pairs of adjacent symbols
XY which may occur in the right part of a production. If a
i< a terminal symbol wuich is an RS of X , aad b 1is a ter-
minal symbol which is an LS of Y , then ab 1is an allowable
terminal symbol pair in the language. The terminal matrix cor-

responding to Floyd's simple grammar is shown in Figure 2.
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T T
T T
T T
T T
T T

Terminal Matrix.
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As before, blank positions in the matrix correspond to invalid
constructicns and can be used in cornection with context-de-
pendent transformations.

During the scan of certain statement types it becomes
convenient to invoke the statement-scanning algorithm from a
macro transformation (see Section 3.2) at a higher syntactic
level. The algorithm is expected to terminate in the identifi-
cation of one of the nonterminal symbols described in connection
with the production system. The contextual features necessary
to properly initiate and terminate such a procedure can be sum-
marized in a pair of tables, each giving respectively the left

and right terminal symbol selimiters which may bracket the non-

terminal symbol to be identified as the goal of the procedure.
The algorithm is given below.
The table of left terminal symbol delimiters (LSD)

can be constructed by the following process:

1. For every production U*xTIUIy enter T1 as
an LSD of U

2. For every oroduction U*le enter ev vy LSD of
U1 as a LSD of U
3. Repeat Step 2 until in a finite numter of steps

the process ccnverges.

The table of right tcerminal symbol delimiters (RSD)
is constructed by an analogous process. Figure 3 shows these

two tables as derived from Floyd's simple grammar.
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Left Terminal Delimiters

NTC Terminal Characters
S

A (

B + (

c + * (

Right Terminal Delimiters

NTC Terminal Characters
! S

A + )

B )
i C + * )

Figure 3. Terminal Delimiter Tables.




The most useful of all the varicus tables and matrices
discussed so far is a three--dimensicnal array called the ter-

minal context matrix. This matrix, used in the application of

context-dependent transformations, indicates for every pair of

terminal symbols a and b whether:

1. the pair ab 1is allowable in the language,
2. a nonvoid precedence relation exists between a

and b

The matrix can be considered as two laye:'s of a p X p square
array, the ith column and ith row of which are identified by an
equivalence class. The equivalence classes are constructed

from the precedence and terminal matrices as follows:

1. Construct an m x m square matrix, the ith
column and ith row of which are identified by each of the m
symbols of VT . Each element of the matrix is identified by
its coordinates as the element of the aith row and ajth
column, where a, and aj are symbols of VT . Each such
element is a coded number from which can be determined
a. whether the adjacent symbol pair a.laj is
allowable,
b. whether a nonvoid precedence relation exists
between a, and aj

2. From this matrix a reduced matrix is constructed

by deleting equivalent rows and columns in the following way:
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if ¢ and aj identify two rows and in addition the corie-
sponding two columns, then a, and aj belong to the same
equivalence class if the rows identified by a, and aj are
identical and in addition the columns identified by a, and
aj are identical. The resultant matrix will have p rows
and p columns.

3. The terminal context matrix is then constructed
i1.um the reduced matrix by associating with the first p x p
layer a set of integer-valued elements which, for the aith
row and ajth column, take on the value one if aiaj is an
allowable terminal pair and zero otherwise. The second p x p
layer is constructed in the same manner of the same elements,

which take on the value one if a nonvoid precedence relation

exists between ai and aj and zero otherwise.

The equivalence classes and terminal contex* matrix
derived from Floyd's simple grammar are shown in Figure 4, In
this figure the letter T stands for a one in the first layer
and the letter P for a one in the second layer. In the con-
struction of the terminal context matrix a partition of V

T

has been achieved which assigns to each symbol of VT a
syntactic class number which is an index to a row or column

of the terminal context matrix. Each terminal and metaterminal
symbol of the MAD/I language is assigned such a syntactic class

number along with its left and right precedence functions as

part of the internal descriptor developed within the compiler.

- W " N N EE N EE e
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Equivalence Classes

CL Rep Members
01 + *

02 (

03 )

04 %1

Matrix

) PT PT 03

01 02 03 04

Figvure 4. Terminal Context Matrix.
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The 1‘wtivation for constructing the terminal context
matrix in just this manner will become clearer subsequently
upon consideration of context-dependent transformations. It
may be pointed out here that the elements of each of the two
iayers may take on values other than zero a.d one in connection
with these transformations, and in a sense form the elements
of a kind of state transition table which drives the statement—

scanning algorithm.

III. TRANSFORMATIONS

It was pointed out in passing above that a strictly
limited operator-precedence grammar is simply not rich enough
to describe th.se syntactic structures required for MAD/I.
There are two imme..ate demonstrations of this fact, both in-
volving contextual information needed for the resolution of a
syntactic type. In the first, a single terminal symbol of VT
is used both to represent a unary operator and to represent
a binary operator. The unary plus and minus signs are the most
common examples of this, but others can be found in the MAD/I
syntax.

Apparently this common syntactical form cannot be
described in the obvious fashion in an operator precedenca
grammar. However, if the twc uses of the operator are assigned
different names, perhaps the minus sign for the binary case
and the %NEG symbol for the unary case, .aen zu operator

precedence grammal description is readily apparent. Moreover,




by inspection of the terminal context matrix (see Section 2.4)
a simple context-dependent transformation can be synthesized
which indicates exactly those contexts in which the minus sign
is to be replaced by the metaterminal %NEG. The generaliza-

tion of this procedure leads to the notion of terminal trans-

formation which will be discussed in detail in following
sections.

The second demonstration of the inadequacy of the
unenriched operator precedence grammar description for the
MAD/I syntax appears at the level of statement parsing. The
problem is that, while at the expression level the order of
the identification of the various prime phrases parallels the
order in which the object code produced will be executed, at
the statement level this is not necessarily the case. One
might in fact say that the match between the identified syn-
tactic construct and the applicable semantic rules seems to be
poor. Another way of saying the same thing is that the basic
operator precedence grammar expression scanner is a bottom-up
syntax analyzer and such an analyzer works well in a simple
algebraic expression environment. On the other hand, the
binding structure among the expressional components of a state-
ment can really best be parsed by a goal-oriented top-down
analyzer. Techniques 7or turning the expression scanner inside-
out, so to speak, for this purpose will be discussed in follow-
ing sections. These techniques involve the notion of the

precedence transformation, rcally an extension of the familiar
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technique which associates to each instance of an identified

prime phrase a macro definition in which the semantic interpre-
tation rules associated with that phrase are expressed.

All context-dependent transformations are identified
using the terminal context matrix described in Section 2.4.
Properly constructed, the terminal context matrix initiates
each type of transformation only under well-defined contextual
environments. The hat trick in this procedure, however, is to
insuvre that the excellent error-recovery characteristics in-

herent in the operator precedence grammar are not unreasonably

compromised and that no ambiguities are introduced into the

-
language by virtue of the new syntactic constructions so de- j
fined. A specification of the necessary constraints upon the -

£
applicable contexts in order that these requirements be satis- oo

fied appears elusive using the analysis techniques illustrated
herein. On the other hand, a specification of sufficient con-

straints can be given in certain cases.

3.1 Terminal Transformations

The introduction of context-dependent transformations

can be established at two levels: first, consider a sequence

of input symbols aoal...aiaj...(a £ VT) which are input to

the compiler. These are extracted in turn from the actual in-

put character stream by the lexical analyzer, so that a, and

aj for exampie are identifiers which are represented by des-

Do

criptors within the compiler. Now, consider the case where

the statement scanning algorithm, having just read symbol a;

asnl

A




is about to read symbol aj . At this point the terminal con-

text matrix is accessed and the integer found at the inter-
section of the row and column corresponding to a, and a, is

extracted. The following cases are possible:

1. The integer has the value one, in which case the
pair aiaj is allowable and the statement scanning algorithm
proceeds.

2. The integer has the value zero, 1n which case
the pair aiaj represents an error, and a recovery procedure
is initiated.

3. The integer has a value other than one or zero
and is assumed to identify a built-in tiansformation which
is immediately executed. Such a transformation is c:lled a

terminal transformation, and several such are described below.

A terminal transformation is designed to produce

a string of terminal symbols 1n the following manner:
ab » axb ,

where both a and b are terminal symbols and Xx 1is an
arbitrary string of terminal symbols. (In the useful cases
described here x is a single terminal symbol).

In practice, a terminal transformation is constructed
by defining an operator precedence grammar with certain addi-
tional primitives which cannot by design in the language be

elements of an input string. Let the environment of such a
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primitive a be vepresented by xay , where x represents

any member of the set of terminal symbols which may occur ad-
jacent to a on the left and y any member of the set which
may occur on the right. Now verify that the contexts formed

by juxtapositions of an element of x and an element of y are
all invalid; that is, these contexts do not occur in tne tei-
minal context matrix. When »>ne of these "invalid" <contexts

is found, then, the introduction of the primitive a in the
manner shown is guaranteed to be unambiguous.

In order to preserve the consistency of the language
it is necessary to apply the terminal transformation in cll
equivalent contexts; that ic, if both ab and c¢d are valid
terminal strings in the new grammar; then if the terminal trans-
formation is applied in the ab context, it must also be ap-
plied in the c¢a context.

As an example of a practical application of this
technique, conside: the grammar whose productions are shown
in Figure 5. This grammar happens to be used to descrice the
syntax of the operator and operand fields in an experimental
assembler for the PDP-8 and PDP-9 computers. The plus and
minus symbols are interpreted as two's complement binary
operators and the logical symbols as one's complement bit-
wise binary operators. The %M symbol stands ror the two's
complemcnt unary negation operator and the %N symbol stands
for th: cne's complement unary Litwise inversion operator.

The %I symbol stands for any operand, eith.: a variable or
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PRLDYCTIONS

001 Ul = 31

002 Ul = Y1 ZA
003 U2 =1

004 U2 = ZN U?
ons U4 = Y2

00F U4 = U4 & U2
007 US = U4

oce UYs = us | ya
00S U5 = US ~ U4
010 Uk = U=

011 ys = U7

012 U7 = TN U7
013 UT = IM YA
014 U6 = Y& £ U7
015 U6 = Us | u7
016 U6 = U5 ~ U7
017 UB = Uh

018 LP = UR * Us
019 ur = U9 /7 U6
020 US = U8B

027 U9 = U9 + U8
022 U9 = Us - UR
023 UR = Y9

024 Ul = ( UB )
025 UF = 2' yn %R

NCN.E2MINAL VACABULARY

Ul uZ2 UuUs Us s Y7 U8 Ul Ul UF

TERMINAL VOCARUL ARY

$I %A IN & | -~ M % / + - (

Figure 5. Example Grammar—Productions.

L
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o°

a constant. The L and %R symbols stand for left closure,
which marks the bottom of the stack, and right closurz, which
represents the end-of-statement (card) delimiters respectively.
These two symbols are introduced for convenience in error re-
covery. Finally, the %A stands for an attribute operator
used to specify a property ot an identifier.

It is the intent in the source language of this ex-
perimental assembler to represent both the two's complement
binary subtraction operation and the unary negation (%M)
operations by the minus sign (-) and both the one's comple-
ment bitwise binary subtraction (i.e., ¢xclusive-OR) and
unary inversion (%N) operations by the logical-not symbol
(=) . Thus a terminal transformatiin is to be synthesized
which results in the replacement of the - symbol by the %M
symbol and the = symbol by the %N symbol in the proper
contextual environments.

These environments are readily apparent from the
terminal context matrix for this grammar (Figure 6). In this
figure note that all the binary operators are 1n equivalence
Class 4 and all the unary operators in equivalence Class 3.
Then note that the terminal contexts x%N and x§ , where x
represents any terminal symbol, %N (a unary operator of Class
3) and § (a binary opeiator of Class 4) are mutually ex-
clusive. In particular, then, if an "invalid" context vy§
is found in the source text and furthermore the context y%N

is valid, then the terminal transform x§&*x%WN 1is indicated,.
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TERMINAL CONTEXT MATRIX
EQUIVALENCE CL ASSTES

CL REP MLMBERS

o1 ¥I

0?2 ZA

03 93IN IM

g4 & | - * / + -
05

06 )

cr =L

08 IR

EQUIVALENCFE MATRIX

ZI TA N & ( ) I %R
4 Y 3 PY PT 01
LA PT PT PT  TPTTO2

IN PT P PT P PT P P 032
€ PT P OTP PTP P 04
( PT o pPT P PT P 05
) PT PpT PTY PT C6
L PT P PT P PT P 07
N 0R

01 02 03 04 05 06 07 08

Example Grammar—Terminal Contexi

Matrix.
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Terminal transformations are implemented within the

MAD/I compiler as a macro call, the operands of which include

1. the last terminal symbol scanned a,

2. the terminal symbol nex*t to be read aj.
The macro may produce the following results:

) return immediately to the statement-scanning
algorithm (a no-operation),

2. replace aj with a new symbol a

3. delete aj , and

4, insert a single symbol x such that x will
be the symbol next to be read and aj the next symbol follow-

ing x .

The following six terminal transformations are presently im-

plemented within the compiler:

Terminzl Error.

The pair aiaj is not allowzble in the language,
nor does it represent a context of any terminal transformation.
The macro definition associated with this transformation by

convention prints a diagrnostic wessage.

Unary Operation.

The jzir a.laj represents a context in which aj
would normally be expected to be a unary operator. In this

case, however, aj belongs to the class of binary operators.
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The macro definition associated with this transformation by con-

vention:

1. if aj is the symbol '"+" then aj is deleted,
2. if aj is the symbol "-" then a_  is replaced

by the symboi %NEG representing the unary negation operation.
In other than these two cases a diagnostic message is generated.

Empty Argument.

The pair aiaj represents a context in which a
would normally be expected to be an operand, and furthermore,
if x represents such an operand, then the context a, x aJ
is valid in the language. This transformation 1s involved 1n
several contexts corresponding to missing arguments in function
calls and subscription operations The macro definition as-
sociated with this transformation by convention 1inserts a dum-

i

my operand between a. anc aj and this 1s not considered

an error.

Empty Statement.

The pair aiaj represents a context in which a
is normally expected to be a statement, and furthermore, 1f
X represents such a statcement, then the context a x aj 1s
valid in the language. The macro definition associated with

this transformution by convention inscrts a dummy operand

between e)..1 and aj and this is not considered an error.
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Empty Declarative List Element.

The pair aiaj represents a context in which a4
is normally expected to be a Jeclarative list element (see
Section 4.2), and furthermore, if x represents such an
element, then the context a; X aj is valid in the language.
This transformation is used during the scan of those declara-
tions which apply default attributes to the program. The macro
definition associated with this transformation by convention
inserts the %DEFAULT ogpsrand between a, and a. and, if

)
aj is the symbol '";" , this 1s not considered an error.

Empty Executahle List Element.

The pair a.laj represents a context in which a., 1is
normally expected to be an executable list element {see Section
4.2}, and furthermore, if x represents such an element, then
the context a, x aj is valid in the language. The macro
definition associated with this transformation by convention
inserts a dummy operand between a; and aj and this is

not considered an error.

The %TAG Transformation.

Although classed as a terminal transformation, the
%*TAG transformation exhibits a special behavior. The pair
aiaj represents one of the contexts ")(" or "%ID('. The
%TAG transformation causes a metaterminal symbol x to be
inserted between a, and aj such that the context a, x a,

J
is valid in the kernel grammar. There are two interpretations

el GmE Mk Seed
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of this transformation depending upon 1ts occurrence in a
declarative list element or an executable list element. If
the %TAG transformation occurs in a declarative list element,
tien an implicit attribute assignment is indicated which
interprets the list elements witain the parentheses on the
right as an attribute structure tc be attached to the operand
(possibly a list enclosed in parentheses) on the left The
nature of this interpretation can depend both on the name of
the declaration statement 1n which this occurrence is embedded
and on the name of the macro definition invoked by the trans-
formation. In this case, the name 1s given as an argument to
the statement-scanning algorithm.

If the %TAG transformation occurs 1n an executable
list element, then 2n implicit subscrption operation is 3in-
dicated which interprets the 1ist elements within the paren-
theses on the right as an argument to a component selection
function which 1dentifies a particular component of an array
during execution. In this case also. the macro name 1invoked
by the transformation 1s given as an argument to the state-
ment-scanning algorithm.

The above transformations provide some enrichment
of the kernel grammar without materially affecting 1ts gener-
ative power. Note that although the contextual environments
which cause these transformations to be 1nvoked are not
normally definable during compilation, the macro definitions
associated with the names mentioned are of course definable
Thus the behavior esfected i1n the :ndividual cases may be

altered by definitional procedures.
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3.2 Precedence Transformations

Although the terminal transformations described in
the preceding section provide some additional power to the
basic expression-scanning algorithm, the power is principally
concentrated in reducing the nuisance value of the language
by allowing some syntactic "cheating'" in the specification of
the language On the other hand, the basic analytical problem
irherent in a bottom-up parsing algorithm remains: it is
exceedingly difficult to specify the syntax of a complicated
statement involving several constituent expressions without
doing much violence to its semantic interpretation rules.

The approach taken in the design of the MAD/1 com-
piler has been to represent certain syntactic forms which
have been parsed by the expression-scarnning algorithm as an
instance of a metaterminal symbol which is an element of the
kernel grammar. This technique involves the identification
by means of a terminal transformation of the initial character
or prefix of that <tructure which, when parsed, will become
the metaterminal symbol. Once such a context has been identi-
fied, the basic scanning process *.“ urses 1n such a way as to
exhibit a top-down behavior. In other words. the identifica-
tion of the metaterminal becomes a process directed by com-
mands embedded within a macro definition, and this process can
be obviowusly context-dependent. Some of the macro commands
can cause the basic scanning process to resume its precedence-

directed scan at this lower level, but with the additional

§omdq
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requirement that a goal-directed bzhavior be realized. When
the syntactic structure representing the metaterminal symbol
is completdy parsed, perhaps requiring several goal-dirvcted
scanner calls, a nonterminal symbol representing the meta-
terminal symbol is generated and the scanner pops up to the
original statement scan level

The manner in which the goal-directed syntactac
scan 1s realized using a precedence-directed scanning algorithm
is obviously the key to the success of this technique. This 1s
done candidly, by a seat-of-the-pants combination of rule-
bending and judicious use of what are called here precedence
transformations.

The explana“ion of how this 1s done requires some
superficial explanation of the manner in which the statement-
scanning algorithm operates. The algorithm, patterned after
those suggested by Bauer and Samelson, Arden and Galler,
Floyd, and several others, makes use of a compile-time stack
in which symbols are stored during the parsing process This
stack at each instance during the scan contains a sequence of
symbols, each symbol representing eisther an operator or a non-
terminal symbol. At the top of the stack 1s a nonterminal

symbol X (possibly null), and immediately below this 15 at

least one terminal symbol a, not of the operand class. Let
this terminal symbol be identified by a, Then consider
the sequence of symbols a_a, a, - aJ which are input to

the translator. Now, having just read aJ , the statement-




scanning algorithm establishes a precedence relation between

a, on one hand and aj on the other. Note that the symbols
betwe¢ 2n a, and aj already have been read and the terminal
pairs established as allowable. Thus all terminal transforma-
tions have been completed at this point. Now, when ay and

aj are compared in the precedence relation, the second layer

of the terminal context matrix 1s accessed and the integer found
at the 1ntersection of the row and column corresponding to a

k

and aj is extracted. The following cases are possible:

1. The integer has the value one, in which case the
pair akaj is contained in a nonvoid precedence relat.un and
the sctatement scanning algorithm proceeds.

2 The integer has the value zero, in which case
the pair akaj represents an error and a recovery procedure
is initiated.

3. The integer has a value other than one or zero
and is assumed to identify a macro transformation which is
immediately executed Such a transformation is called a pre-

cedence transform, and several such are described below.

A precedence transformation is implemented within

the MAD/I compiler by a macro definition in the following

k

compared in the precedence relation in the manner described

manner: Let a and aj represent the terminal symbols

above. Let the precedence context a,

environment fora precedence transformation, and furthermore

aj be selected as an
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require that a, < aj . Then the precedenc: transformation
associated with the name «., will:
1. stack the representative of the equivalence

class containing a (or a representative of ancther equiv-
J
alent class which obeys the same precedence and terminal rela-

tions in the "left context" of a.);

2. initiate the statement-scanning algorithm at
the next lower level to scan the arguments of the statement

1dentified by aJ ; and, finally,

3. replace X and aj on the stack with a non-

terminal symbol which represents the result of the transforma-

tion.

The integrity of the kernel language 1s not zompro-
mised if at least the following conditions are satisfied:

Let T be a metaterminal symbol such that
1. in all allowable contexts TIUIT , the pair
TIT is selected as an environment for the same transforma-

tion and, in ali of these contexts, T1 < T

2. in all allowable contexts TU, I,

< -

.
»

, T T

[§%]

Thus the macro associated with the transformation bears the
responsibility of 'positioning" the 1nput text pointer
properly before .urrender-ng to the highcr statement scanning
level at which it was 1nvoked. Convenient rules fur ac-

complishing this 1nvolve the tables of left and right terminal

delimiters deveioped 1n Section 2 4
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Four precedence transfurmations arce recognized with-
in the compiler. Three out of these four are essentially
fixed vithin the compiler and are not subject to redefinition.
The fourth s implemvnted as a macro call and 15 a good
excmple of the statement definition capability of the compiler.

All of ihese w'll be discussed briefly below.

Parenthesized List Element

Note the productions containing the purenthesi:zed
list element (PLS) in Figure 7, Section 4 1, as a left part.
All of taese productions taxke the form (X) where X is a
aonterminal symbol. Furthermorc, the only occurrence of
parentheses are 1u these productions. The parenthesized list
element transformation in fact performs the operatic- (X)=*FLS
This transformatioa could have been performed as a macro opera-
tion and is performed as a compiler operation only for the

sake of convenience.

List Element.

All argument lists in function calls and subscription
operations are presumed to be linear; that is, no tree-iike
structures are allowed. The commas which separate the list
items are then superfluous. The list transtormation performs

the operation

where X 1s a nonterminal symbol. Bot!' the parenthesized




-43-

list transformation and the list transformation are expected
to evolve &as richer structures are i1ncorpuvrated into the com-

piler.

Statement Keyword.

Sever-1 terminal symbul syntactic classes are desig-
nated as statement keyword classes. Among these are the
symbols of the %SIMP, %COMP, %DECL, %LTST, %ATRB, @ and:
classes (see Figure 7, Section 4.1) The first four of these
represent symbols most like.y to designate an 1dentifying key-
word of a statement. 1lnspection of the precedence matrix for
the kernel grammar (Figure 13, Section 4.1) reveals that for
every symbol a which can occur 1n a precedence relatioa on
the left along with a statement keyword b on the right,

that

a <b

Each instance of this type is chosen as an i1nstance of a
keyword transformation, which causes a macro definition to be
invoked, the name of which 1s the keyword 1tself. The macro
definition generates connectives as required and calls upon
the statement-scanning algorithm at a lower level to scan the
arguments of the prefix and scope Each time the statement-
scanning aigorithm 1s called, an clement of one of the state-
ment Xeyword classes is stacked, depending upon the nonter-

minal symbol expected as the argument, and according to the
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following table, which is a subset of the terminal delimiter

tables (see Figures 13 and 19, Scection 1.1}

Keyword Class Nonterminal List Separator Scatement Separator

%S1MP ST none ) ; %END %RC
% COMP STM ; %END

SLIST LST , ) 3 %EN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>